NEWTON LAWS OF MOTION
FRICTION
VELOCITY AND ACCELERATION
CENTRAL FORCES
UNIFORMLY ROTATING FRAME- CENTRIFUGAL AND CORIOLIS FORCES
CONSERVATION LAWS
CENTRE OF MASS AND VRIABLE MASS SYSTEMS
RIGID BODY DYNAMICS
FLUID DYNAMICS
COULOMB LAW AND ELECTRIC FIELD
GAUSS LAW OF ELECTROSTATICS AND APPLICATIONS
POLARIZATION OF DIELECTRICS
WORK AND ENERGY IN ELECTROSTATICS
BOUNDARY VALUE PROBLEMS
CURRENT ELECTRICITY
MAGNETOSTATICS
FARADAY LAW OF ELECTROMAGNETIC INDUCTION
MAGNETIC MATERIALS
DC CIRCUITS
AC CIRCUITS
MAXWELL EQUATIONS and poynting vector
ELECTROMAGNETIC WAVES
REFLECTION AND REFRACTION OF EM WAVES AT THE INTERFACE OF TWO DIELECTRICS
Section 3: MATHEMATICAL PHYSICS
MULTIPLE INTEGRAL
VECTOR CALCULUS
DIFFERENTIAL EQUATIONS
MATRICES
DIFFERENTIAL CALCULUS
FOURIER SERIES
PARTICLE NATURE OF WAVE
WAVE NATURE OF PARTICLE
H ATOM
POSTULATES OF QUANTUM MECHANICS
SCHRONDINGER WAVE WQUATION
NUCLEAR PHYSICS
SPECIAL THEORY OF RELATIVITY
SIMPLE HARMONIC OSCILLATION
DAMPED AND FORCED OSCILLATION
WAVES
GEOMETRICAL OPTICS
INTERFERENCE
DIFFRACTION
POLARIZATION OF LIGHT
THERMAL EXPANSION
CALORIMETRY
TRANSMISSION OF HEAT
1 of 2

Problems on Line Integral-2

video

Example : 1

Evaluate the line integral  \int\limits_c {\vec F \cdot d\vec r} where  \vec{F} = (x + 2y) \hat{i} + (2y - x)\hat{j} and C is curve in xy plane consisting of the straight lines from (0, 0) to (1, 0) and then to (3, 4).

Solution :

The curve C consists of two pieces of smooth curves  C_1 and  C_2 .

 C_1 is straight line from (0, 0) to (1, 0) ie. y = 0

 C_2 is straight line from (1, 0) to (3, 4)

i.e.  y - 0 = \left( {\dfrac{{4-0}}{{3-1}}} \right) \cdot (x-1)

or,  y = 2x - 2

So, along  C_1, y = 0, dy = 0 (x is an independent variable)

 \vec F \cdot d\vec r = x dx


Along  C_2; y = 2x - 2, dy = 2dx (let us take x as independent variables).

 \vec F \cdot d\vec r = (x + 2y) dx + (2y - x) dy

on  C_2, \ \ \ \ \vec F \cdot d\vec r = (x + 2(2x - 2))dx + (2(2x - 2) - x) \cdot 2dx

 = (11x - 12)dx

So,  \int\limits_C {\vec F \cdot d\vec r} = \int\limits_{{C_1}} {\vec F \cdot d\vec r} + \int\limits_{{C_2}} {\vec F \cdot d\vec r}

 = \int\limits_0^1 {xdx} + \int\limits_1^3 {(11x - 12)dx}

 = \left. {\dfrac{{{x^2}}}{2}} \right|_0^1 + \left. {\left( {\dfrac{{11}}{2}{x^2} - 12x} \right)} \right|_1^3 = 20.5

Example 2 :

Evaluate  \oint\limits_C {\vec F \cdot d\vec r} where  \vec F = ({x^2} + {y^2})\hat i - 2xy\hat j where curve C is a rectangle in the xy plane bounded by y = 0, x = a, y = b, x = 0.

Solution :

The curve C as shown in figure consists of four pieces of smooth curves  C_1, C_2, C_3 \ \& \ C_4.

 \vec F \cdot d\vec r] = (x^2 + y^2)dx - 2xydy

On  C_1, y = 0, dy = 0, \vec F \cdot d\vec r = x^2 dx

On  C_2, x = a, dx = 0, \vec F \cdot d\vec r = - 2ay dy

On  C_3, y = b, dy = 0, \vec F \cdot d\vec r = (x^2 + b^2)dx


On  C_4, x = 0, dx = 0, \vec F \cdot d\vec r = 0

 \oint {\vec F \cdot d\vec r} = \int\limits_{{C_1}} {\vec F \cdot d\vec r} + \int\limits_{{C_2}} {\vec F \cdot d\vec r} + \int\limits_{{C_3}} {\vec F\cdot d\vec r} + \int\limits_{{C_4}} {\vec F \cdot d\vec r}

 = \int\limits_0^a {{x^2}dx + \int\limits_0^b { - 2aydy} + \int\limits_a^0 {({x^2} + {b^2})dx} } + \int\limits_b^0 {0 \cdot dy}

 = \left. {\dfrac{{{x^3}}}{3}} \right|_0^a + \left[ { - a{y^2}} \right]_0^b + \left[ {\dfrac{{{x^3}}}{3} + {b^2}x} \right]_a^0

 = \dfrac{{{a^3}}}{3} - a{b^2} - \dfrac{{{a^3}}}{3} - a{b^2} = - 2ab^2